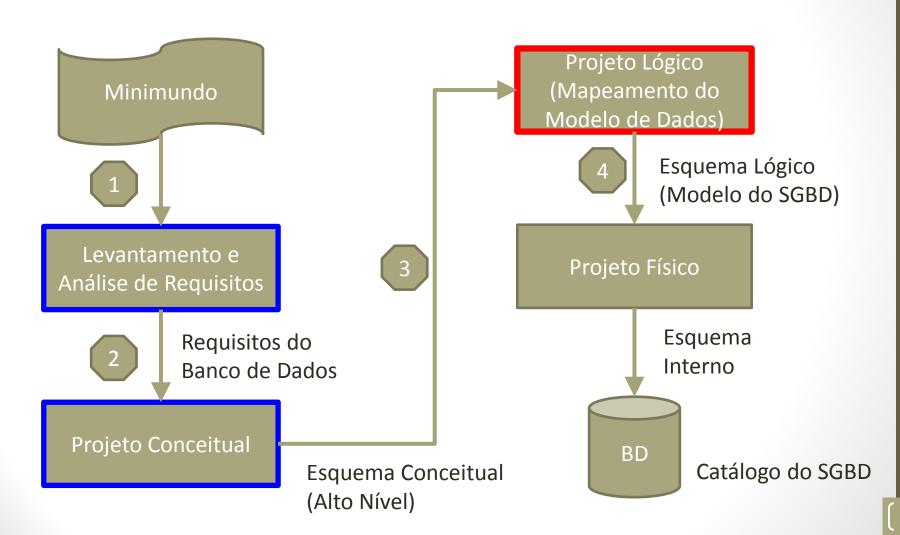


Banco de Dados

Aula 06: Modelo de Dados Relacional –
 Introdução e Restrições de Integridade

Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br



Agenda

- Introdução
- Conceitos do Modelo Relacional
- Restrições de Integridade Básicas
- Esquema do BD Relacional
- Restrições de Integridade do Esquema
- Exercício

Processo de Projeto de Banco de Dados

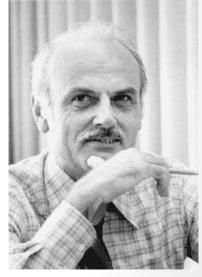
Introdução

- O modelo Relacional foi proposto em 1970 por Edgar F.
 Codd, quando o mesmo trabalhava na IBM;
- Consolidou-se como principal modelo de dados para aplicações comerciais;
- SGBDs relacionais:
 - DB2 (IBM)
 - PostgreSQL
 - ADABAS
 - Sybase
 - Oracle
 - SQL Server (Microsoft)
 - MySQL

Introdução

1970 - 1972

Edgar Frank Codd propõe o modelo de dados relacional, que se tornou um marco em como pensar em banco de dados. Ele **desconectou a estrutura lógica do banco de dados do método de armazenamento físico**. Este sistema se tornou padrão desde então.


Década de 70

Dois principais protótipos de sistema relacional foram desenvolvidos entre 1974 e 1977 e demonstram um ótimo exemplo de como a teoria conduz a boas práticas.

Ingres: Desenvolvido pela UCB. Que no final das contas serviu como base para Ingres, Sybase, MS SQL Server, etc.

System R: Desenvolvido pela IBM San Jose, serviu de base para o IBM SQL/DS, IBM DB2, Oracle, todas os BDs da HP.

O termo Sistema de Gerenciamento de Banco de Dados Relacional (SGBDR – RDBMS em inglês) foi definido durante este período.

Dr. Edgar Frank Codd, o pai do modelo relacional.

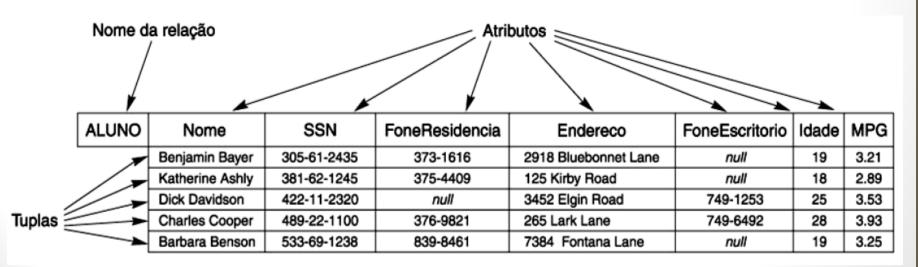
Conheça mais o trabalho do Dr. Codd em

www.informatik.unitrier.de/%7Eley/db/about/code html

Introdução

 O modelo relacional representa um banco de dados como um conjunto de relações;

• Informalmente:


uma relação = uma tabela de valores

- cada linha representa uma coleção de dados relacionados;
- cada linha de uma tabela representa um "fato" que tipicamente corresponde a uma entidade ou relacionamento do mundo real;

Conceitos do Modelo Relacional

- Linhas de uma relação (tabela) = tuplas
- Cabeçalho de cada coluna = atributo
- Conjunto de valores que pode aparecer em cada coluna = domínio

Atributos e Tuplas da Relação ALUNO

^{*} MPG = Média Pontos Graduação: um número real de 0 - 4.

Conceitos: Esquema de Relação

- Descreve a relação
- R(A₁, A₂, ..., A_n), onde:
 - R → Nome da relação
 - $A_i \rightarrow$ Nome de um atributo
 - n → Grau da relação
 - cada Atributo A_i é o nome de um papel desempenhado por algum domínio D no Esquema da relação R

- Exemplo:
 - Estudante (Nome, CPF, Telefone, Endereço, GPA)

Conceitos: Relação

Relação r(R)

- Conjunto de tuplas: $\mathbf{r} = \{\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_m\}$
- Cada tupla é uma lista ordenada de valores:

$$t = \langle v_1, v_2, ..., v_n \rangle$$

Attributo A_i na tupla t: t[A_i]

Características de uma Relação

As tuplas de uma relação não são ordenadas (entre elas);

ALUNO Nome		Nome	SSN	FoneResidencia	Endereco	FoneEscritorio	Idade	MPG
		Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
		Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25
		Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
		Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
		Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21

Relação ALUNO com ordenação diferente

 Registros em um arquivo são ordenados de acordo com a posição em que são armazenados no disco.

Características de uma Relação

Uma tupla é uma lista ordenada de valores;

- O valor de cada atributo em uma tupla é atômico:
 - Atributos compostos e multivalorados NÃO são permitidos;
 - O valor especial null é utilizado para representar valores não conhecidos ou não aplicáveis a uma determinada tupla.

Restrições de domínio

 Especificam que o valor de cada atributo A de uma relação deve ser um valor atômico do domínio dom(A)

Restrições de chave

- Por definição todas as tuplas são distintas;
- Um conjunto de atributos SK de um esquema de relação R tal que:
 - para duas tuplas distintas quaisquer t₁ e t₂ de r(R)
 t₁[SK] ≠ t₂[SK] é uma super-chave de R
- Uma chave de R é uma super-chave com a propriedade adicional de que nenhum de seus subconjuntos também seja uma super-chave de R

```
{SSN, Nome, Idade} = super-chave; {SSN} = chave
```


Restrições de chave

- Um esquema de relação pode ter mais de uma chave chaves candidatas
- Dentre as chaves candidatas de um esquema de relação, uma delas é indicada como chave primária e as demais constituem as chaves alternativas

CARRO	NumeroLicenca	NumeroChassi	Marca	Modelo	Ano
	Texas ABC-739	A69352	Ford	Mustang	96
	Flórida TVP-347	B43696	Oldsmobile	Cutlass	99
	Nova York MPO-22	X83554	Oldsmobile	Delta	95
	Califórnia 432-TFY	C43742	Mercedes	190-D	93
	Califórnia RSK-629	Y82935	Toyota	Camry	98
[Texas RSK-629	U028365	Jaguar	XJS	98

A relação CARRO com duas chaves candidatas: NumeroLicenca e NumeroChassi.

Restrições em valores null

- Especifica se a um atributo é permitido ter valores null
- Exemplo:
 - Todo Aluno deve ter um nome válido, NOT NULL;
 - Nem todo Aluno possui telefone, NULL;

Esquema de um BD Relacional

Um esquema de BD relacional S define:

- um conjunto de esquemas de relação $R = \{R_1, R_2, ..., R_n\}$, e
- um conjunto de restrições de integridade I

$$S = (R,I)$$

Esquema de um BD Relacional

EMPREGADO

PNOME MINICIAL UNOME SSN DATANASC ENDERECO SEXO SALARIO SUP	N DNO
---	-------

DEPARTAMENTO

DEPTO_LOCALIZACOES

DNUMERO	DLOCALIZACAO

PROJETO

PJNOME PNUMER	PLOCALIZACAO	DNUM
---------------	--------------	------

TRABALHA_EM

ESSN	PNO	HORAS
------	-----	-------

DEPENDENTE

ESSN NOME_DEPENDENTE	SEXO	DATANASC	PARENTESCO
----------------------	------	----------	------------

Diagrama para o esquema do banco de dados relacional EMPRESA.

Restrições de Integridade do Esquema

 Outras restrições além das restrições de domínio e de chave.

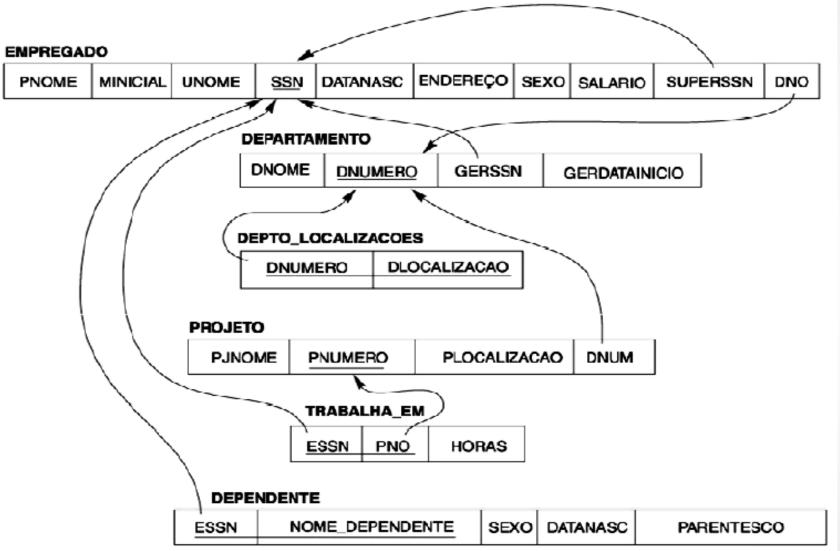
Restrição de integridade de entidade

 Nenhum componente de uma chave primária pode ser nulo.

Restrições de Integridade do Esquema

Restrição de integridade referencial

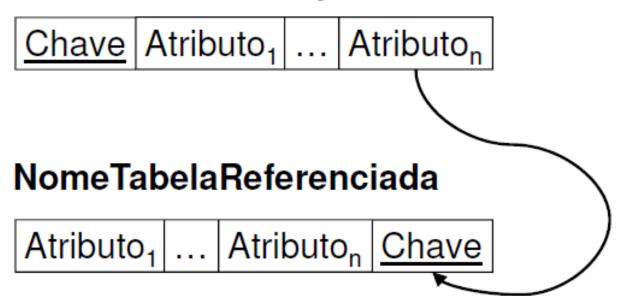
- Usada para manter a consistência entre tuplas de duas relações;
- Uma tupla em uma relação que se refere a outra relação deve referenciar uma tupla existente nesta outra relação;
- Aparecem devido aos relacionamentos entre entidades.


Restrições de Integridade do Esquema

Restrição de integridade referencial

- Seja FK um conjunto de atributos de um esquema de relação R₁ definido sobre o mesmo domínio dos atributos da chave primária PK de outro esquema R₂. Então, para qualquer tupla t₁ de R₁:
 - t₁[FK] = t₂[PK], onde t₂ é uma tupla de R₂ ou
 - t₁[FK] é nulo

Restrições de Integridade do Esquema



Restrições de integridade referencial exibidas no esquema de um banco de dados relacional EMPRESA.

Notação

NomeTabelaPrincipal

Restrições de Integridade

 A restrição de integridade referencial pode ser expressa pela notação

$$R_1[FK] \rightarrow R_2[PK]$$

 onde PK é a chave primária de R₂ e FK é a chave estrangeira de R₁

• Exemplos:

EMPREGADO[DNO] → DEPARTAMENTO[DNUMBERO]

TRABALHA_EM[ESSN] → EMPREGADO[SSN]

TRABALHA_EM[PNO] → PROJETO[PNUMBERO]

Exercício em Sala

• Identificar chaves primária e chaves estrangeiras.

ALUNO

Nome NumerodoAluno	Turma	Curso_Hab
--------------------	-------	-----------

CURSO

NomedoCurso	NumerodoCurso	Creditos	Departamento
			•

PRE_REQUISITO

DISCIPLINA

Identificador_Disciplina	NumerodoCurso	Semestre	Ano	Instrutor
--------------------------	---------------	----------	-----	-----------

RELATORIO_DE_NOTAS

NumerodoAluno Identificador Disciplinas Nota
--

FIM