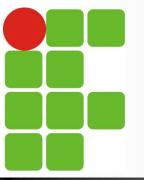
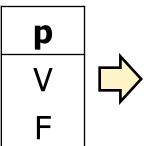


Aula 07 – Construção de Tabelas da Verdade

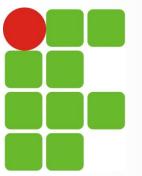

Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

http://www3.ifrn.edu.br/~brunogomes

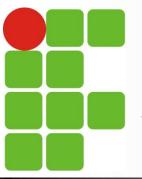

Agenda da Aula

- Utilização de Parênteses em Operações Lógicas sobre Proposições;
- Construção de Tabelas da Verdade;

Revisando

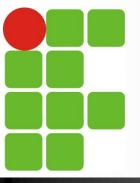

Representação da Tabela da Verdade:

р	q
V	V
V	F
F	V
F	F

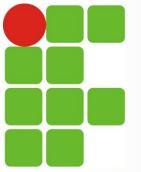


p	q	Operação
V	V	
V	F	
F	V	
F	F	

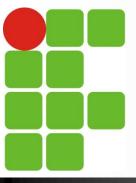
Revisando


- Operações Lógicas:
 - Negação (~)
 - Conjunção (∧)
 - Disjunção (∨)
 - Disjunção Exclusiva (<u>∨</u>)
 - Condicional (→)
 - Bicondicional (↔)

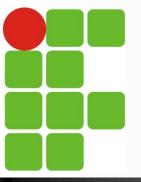
Valor Lógico das Operações


- A definição do valor Lógico final de uma proposição depende do conectivo que estiver utilizando.
- Exemplo:
 - p : Maria é alta (V)
 - q : Maria é elegante (V)
 - Qual o valor lógico da proposição: p ∧ q?

Resposta: V

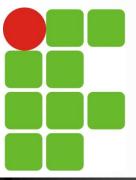

Precedência de Conectivos

- Quando a frase tiver vários conectivos, verificar a precedência:
 - Negação (~)
 - Conjunção (∧) e Disjunção (∨)
 - \blacksquare Condicional (\rightarrow)
 - Bicondicional (↔)

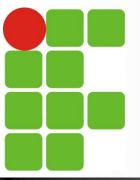


Exemplo

- p : Jorge é rico (V)
- q : Carlos é feliz (V)
- Qual o valor lógico para:
 - p ∧ ~q → p (V)



UTILIZAÇÃO DE PARÊNTESES EM OPERAÇÕES LÓGICAS

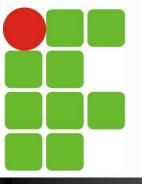


Utilização de Parênteses

- Os parênteses mudam a ordem de precedência dos conectivos;
- O que estiver entre parênteses, executam primeiro, independente da ordem de precedência.
- Exemplos:
 - \blacksquare p \vee p \wedge q
 - $p \lor (p \land q)$
 - $p \rightarrow q \wedge p$
 - $(p \rightarrow \sim q) \land p$

CONSTRUÇÃO DE TABELAS DA VERDADE

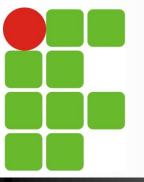
Introdução


- As proposições simples são combinadas através dos conectivos:
 - não
 - e
 - Ou
 - ou ... ou ...
 - se ..., então
 - ... se somente se

Exemplos de construção de Tabelas da Verdade:

р	p	
V	F	
F	V	

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F



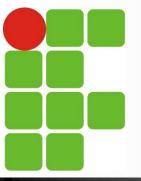
Nº de Linhas

Depende do número de proposições simples que a integram.

Teorema:

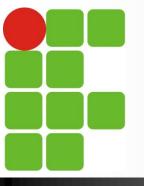
"A tabela-verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas"

Nº de Linhas


Exemplo:

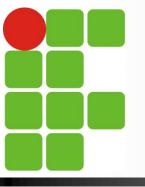
р	q
V	V
V	F
F	V
F	F

2 proposições 2²

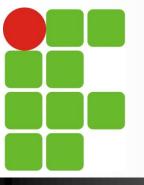

р	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

3 Proposições 2³

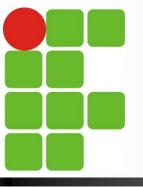
Construção


- Tabela da Verdade de uma proposição composta:
 - Contar o número de proposições simples que a integram;
 - Verificar quantas linhas terá a tabela;

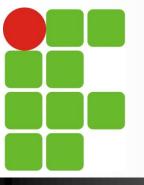
$$P(p,q) = \sim (p \land \sim q)$$


Montando a Tabela da Verdade:

р	q	~q	p ∧ ~q	~(p ^ ~q)
V	V			
V	F			
F	V			
F	F			

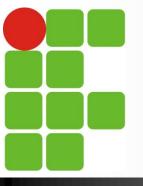

$$P(p,q) = \sim (p \land \sim q)$$

р	q	~q	p ∧ ~q	~(p ^ ~q)
V	V	F		
V	F	V		
F	V	F		
F	F	V		

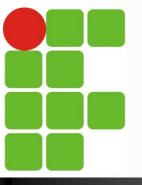

$$P(p,q) = \sim (p \land \sim q)$$

р	q	~q	p ∧ ~q	~(p ^ ~q)
V	V	F	F	
V	F	V	V	
F	V	F	F	
F	F	V	F	

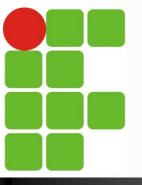
$$P(p,q) = \sim (p \land \sim q)$$


р	q	~q	p ∧ ~q	~(p ^ ~q)
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

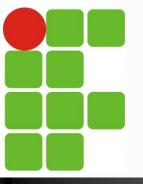
$$P(p,q) = \sim (p \land \sim q)$$


Montando a Tabela:

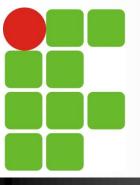
р	q	~	(p	٨	~	q)
V	V					
V	F					
F	V					
F	F					


$$P(p,q) = \sim (p \land \sim q)$$

р	q	~	(p	٨	~	q)
V	V		V			V
V	F		V			F
F	V		F			V
F	F		F			F
			1			1


$$P(p,q) = \sim (p \land \sim q)$$

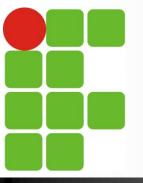
р	q	~	(p	٨	2	q)
V	V		V		F	V
V	F		V		V	F
F	V		F		F	V
F	F		F		V	F
			1		2	1


$$P(p,q) = \sim (p \land \sim q)$$

р	q	~	(p	٨	~	q)
V	V		V	F	F	V
V	F		V	V	V	F
F	V		F	F	F	V
F	F		F	F	V	F
			1	3	2	1

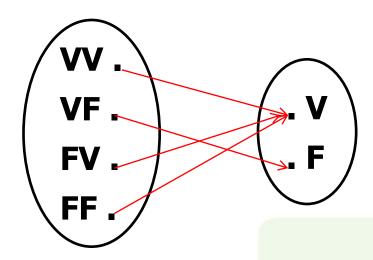
$$P(p,q) = \sim (p \land \sim q)$$

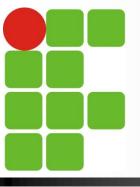
р	q	2	(p	٨	~	q)
V	V	V	V	F	F	V
V	F	F	V	V	V	F
F	V	V	F	F	F	V
F	F	V	F	F	V	F
		4	1	3	2	1



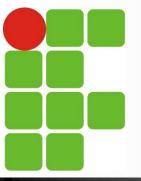
Representação

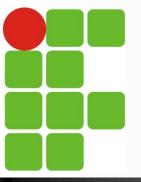
- $P(p,q) = \sim (p \land \sim q)$
- Tabela:

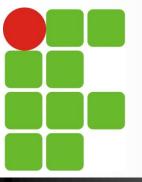

р	q	2	(p	٨	2	q)
V	V	V	V	F	F	V
V	F	F	V	V	V	F
F	V	V	F	F	F	V
F	F	V	F	F	V	F
4		4	1	3	2	1


- Simbolicamente:
 - \blacksquare P(VV)=V, P(VF)=F, P(FV)=V, P(FF)=V; ou
 - P(VV, VF, FV, FF)=VFVV

Representação


- Função P(p, q) associa a cada um dos elementos do conjunto U {VV, VF, FV, FF} um único elemento {V, F}.
 - P(VV, VF, FV, FF)=VFVV
- Diagrama Sagital:


Dúvidas?


Exercício

- Construir a tabela da verdade para:
 - $P(p,q) = \sim (\sim p \rightarrow \sim q)$
- Resolver utilizando os dois métodos de construção da Tabela, e criar o Diagrama Sagital.

Exercício

- Construir a tabela da verdade para:
 - $P(p,q) = \sim (p \land q) \lor \sim (q \leftrightarrow p)$
- Resolver utilizando os dois métodos de construção da Tabela, e criar o Diagrama Sagital.

Exercício

- Construir a tabela da verdade para:
 - $P(p, q, r) = p \vee \sim r \rightarrow q \wedge \sim r$
- Resolver utilizando os dois métodos de construção da Tabela, e criar o Diagrama Sagital.