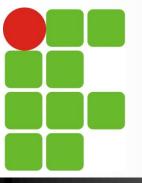
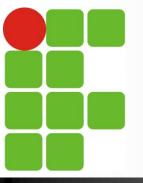

Aula 04 – Operações Lógicas sobre Proposições

Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes


Agenda da Aula

- Tabela da Verdade;
- Operações Lógicas sobre Proposições;


Revisando

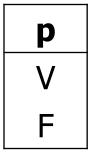
- As proposições podem ser:
 - Simples:
 - p : Walter é engenheiro
 - q : Pedro é estudante
 - Composta:
 - R: Walter é engenheiro e Pedro é estudante
- Representação: R (p, q)

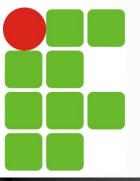
Revisando

- Conectivos:
 - P: Carlos é careca Pedro é estudante
 - Q: Carlos é careca ou Pedro é estudante
 - R : Se Carlos é careca, então é infeliz

Revisando

- Notação:
 - (p) O sol é verde
 - Notação: V(p) = F


- (a) A Lua é um satélite da terra
- Notação: V(a) = V


Tabela da Verdade

 Dispositivo que representa todos os possíveis valores lógicos de uma proposição.

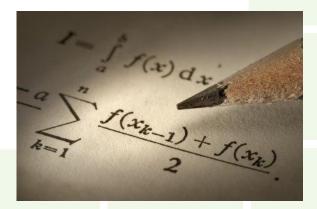
Representação:

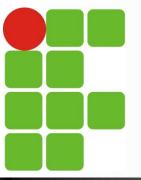
Traduzindo: A proposição p pode assumir os valores V ou F.


Tabela da Verdade

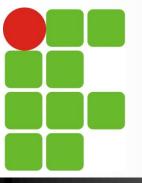
Utilização de duas proposições:

p	q
V	V
V	F
F	V
F	F



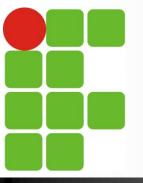

р	q	Operação
V	V	
V	F	
F	V	
F	F	

Operações Lógicas


- Operações realizadas sobre as proposições;
- Seguem a regra do cálculo proposicional:
 - Semelhante à aritmética sobre números.

Operações Lógicas

- Negação (~)
- Conjunção (∧)
- Disjunção (∨)
- Disjunção Exclusiva (v)
- Condicional (→)
- Bicondicional (↔)


Negação (~)

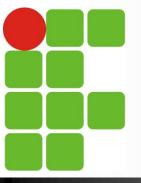
- A negação de uma proposição p é representada por
 - "não p";
 - "~p".
- O valor lógico é:
 - V quando p é falso;
 - **F** quando p é **verdadeira**.

■ Tabela Lógica:

р	~p
V	F
F	V

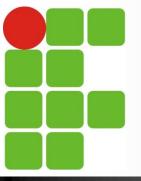
Negação (~)

- Exemplos:
 - r: Roma é a capital da França

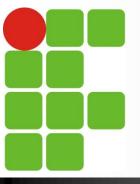

■ p: 2+3=5

Negação (~)

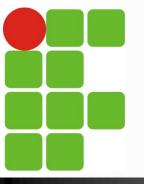
- Exemplos:
 - r: Roma é a capital da França (F)
 - ~r : Roma não é a capital da França (V)


- p: 2+3=5 **(V)**
- ~p: 2+3≠5 (F)

- A conjunção de duas proposições p e q é representado por
 - "p e q";
 - **■** "p ∧ q".
- Valor Lógico:
 - V quando p e q são ambas verdadeiras;
 - F quando nos demais casos.


Tabela Lógica:

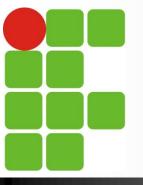
р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F



- Exemplos:
 - p: A neve é branca
 - **q**: 2<5

- r: 7 é um número primo
- s: O céu é vermelho

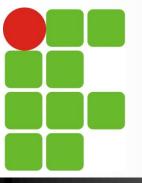
- Exemplos:
 - p: A neve é branca (V)
 - **q**: 2<5 **(V)**
 - \blacksquare p \land q : A neve é branca e 2<5 (V)
 - r: 7 é um número primo (V)
 - s: O céu é vermelho (F)
 - $r \wedge s : 7 \text{ é um número primo e o céu é vermelho (F)}$


Disjunção (V)

- A disjunção de duas proposições **p** e **q** é representado por:
 - **■** "p ou q";
 - **■** "p ∨ q".
- Valor Lógico:
 - V quando ao menos uma das proposições p e q é verdadeira;
 - F quando ambas são falsas.

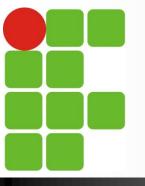
Disjunção (v)

■ Tabela Lógica:

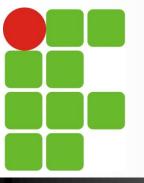

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

Disjunção (v)

- Exemplos:
 - p: Paris é a capital da França
 - **q**:9-4=5


- r: 7 é um número primo
- s: O céu é vermelho

Disjunção (V)

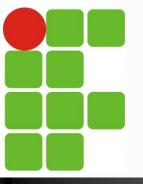
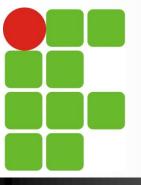

- Exemplos:
 - p : Paris é a capital da França (V)
 - **q**: 9-4=5 **(V)**
 - p ∨ q : Paris é a capital da França ou 9-4=5 (V)

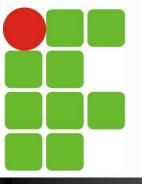
- r: 7 é um número primo (V)
- s: O céu é vermelho (F)
- r ∨ s : 7 é um número primo ou o céu é vermelho (V)

Problema

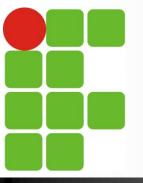
- Verifique as seguintes proposições:
 - P: Carlos é médico ou professor
 - Q: Mario é alagoano ou gaúcho
- As duas proposições tem o mesmo significado?
- Solução: Disjunção Exclusiva (∨)

- A disjunção Exclusiva de duas proposições p e q é representado por
 - **■** "ou p ou q";
 - **■** "p <u>∨</u> q";
 - "p ou q, mas não ambos".
- Valor Lógico:
 - V somente quando p é verdadeira ou q é verdadeira, mas não quando ambas são verdadeiras;
 - F quando ambas são verdadeiras ou ambas são falsas.

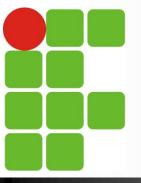




Tabela da Verdade:

р	q	p <u>∨</u> q
V	V	F
V	F	V
F	V	V
F	F	F

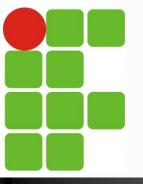


- Exemplos:
 - p : Mario é alagoano (V)
 - q : Mario é gaúcho (F)


- r: O carro é preto (V)
- s: O carro é importado (V)

- Exemplos:
 - p : Mario é alagoano (V)
 - q : Mario é gaúcho (F)
 - p ∨ q : Ou Mario é alagoano ou Mario é gaúcho. (V)
 - r: O carro é preto (V)
 - s: O carro é importado (V)
 - r ∨ s : Ou o carro é preto ou o carro é importado. (F)

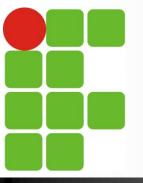
- A Condicional de duas proposições p e q é representado por
 - "se p então q";
 - **■** "p → q";
- Valor Lógico:
 - F quando p é verdadeira e q é falsa;
 - V nos demais casos.



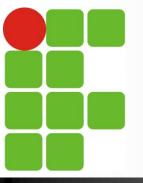
- "p \rightarrow q" ou "se p então q":
 - p é condição suficiente para q
 - q é condição necessária para p
 - p é o antecedente e q o consequente.

■ → Símbolo de Implicação

■ Tabela da Verdade:

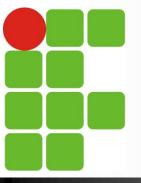

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

- Exemplos:
 - p : Flamengo empatou o jogo (V)
 - q : Flamengo venceu o jogo (F)


- r: Choveu (V)
- s: Está molhado (V)

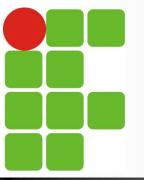
- Exemplos:
 - p : Flamengo empatou o jogo (V)
 - q : Flamengo venceu o jogo (F)
 - $p \rightarrow q$: Se Flamengo empatou o jogo, então Flamengo venceu o jogo (F)
 - r: Choveu (V)
 - s: Está molhado (V)
 - ightharpoonup r
 ightharpoonup s: Se Choveu, então está molhado. (V)

Bicondicional (\leftrightarrow)

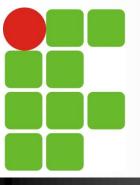

- A Bicondicional de duas proposições p e q é representado por
 - "p se e somente se q";
 - **■** "p ↔ q";
- Valor Lógico:
 - V quando p e q são ambas verdadeiras ou ambas falsas;
 - F nos demais casos.

Bicondicional (↔)

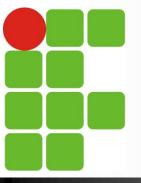
■ Tabela da Verdade:


р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Bicondicional (\leftrightarrow)

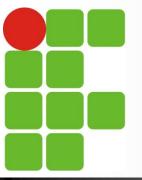

- Exemplos:
 - p : Será aprovado (V)
 - q : Estudar (V)

- p : Será aprovado (V)
- q : Estudar (F)


Bicondicional (↔)

- Exemplos:
 - p : Será aprovado (V)
 - q : Estudar (V)
 - \blacksquare p \leftrightarrow q : Será aprovado, se e somente se, estudar (V)
 - p : Será aprovado (V)
 - q : Estudar (F)
 - \blacksquare p \leftrightarrow q : Será aprovado, se e somente se, estudar (F)

Dúvidas?



Exercício

- Sejam as proposições:
 - p: Está Frio
 - q : Está chovendo

- Traduzir para a linguagem corrente:
 - ~p
 - ~q
 - p ∧ q
 - p ∨ q

- p ∨ q
- p → q
- p ↔ q

Exercício

- Utilizando as mesmas proposições:
 - p: Está Frio
 - q : Está chovendo

- Traduzir para a linguagem corrente:
 - ~p ∧ ~q

 $p \land \sim q \rightarrow p$

p → ~q

■ ~~p

■ p ∨ ~q

■ p ∧ ~~q

Exercício

- Utilizando as proposições a seguir:
 - p: Maria é alta
 - q : Maria é elegante
- Traduzir para a linguagem simbólica:
 - Maria é alta e elegante
 - Maria é alta ou elegante, mas não ambos
 - Maria é alta ou é baixa e elegante